Расчет внецентренно нагруженного ленточного фундамента под наружную стену в доме без подвала

В данной статье будет рассмотрен расчет внецентренно нагруженного ленточного фундамента. Такая ситуация встречается особенно часто при устройстве фундаментов под наружные стены – стена может быть сбита относительно оси ленточного фундамента. В итоге вертикальная нагрузка передается не центрально, а с эксцентриситетом, возникает дополнительный изгибающий момент, увеличивается краевое давление под фундаментом и, как следствие, значительно возрастает ширина ленты. Поэтому если ваша стена сбита относительно оси ленточного фундамента хотя бы на 50 мм, ни в коем случае не игнорируйте это, а учтите в расчете.

Пример расчета центрально нагруженного фундамента можно посмотреть здесь. Для наглядности в данном расчете все исходные данные совпадают с тем расчетом – чтобы можно было провести анализ и сделать для себя соответствующие выводы. По причине одинаковых исходных данных многие этапы расчетов будут схожи. Я постараюсь не дублировать пояснения к расчету, а давать только комментарии к отличительным особенностям расчета внецентренно нагруженного ленточного фундамента. Поэтому рекомендую изучить оба расчета – уверена, это будет полезной работой.

Чтобы сравнить, на сколько может увеличиться ширина подошвы ленточного фундамента и убедиться, насколько важен следующий расчет, загляните в таблицу ниже.

Эксцентриситет приложения нагрузки на фундамент

Ширина подошвы по результатам расчета

Ссылка на статью расчета

0

0,7 м

Расчет центральнонагруженного ленточного фундамента

0,05 м

0,9 м

 

0,1 м

1,2 м

Данный расчет

Как видно из таблицы, при всех остальных одинаковых вводных данных одна лишь величина эксцентриситета сыграла значительную роль в размерах итоговой ширины подошвы ленты.

Спойлер: пояснения к расчету (в спойлере картинка

Скачать файл с расчетом без пояснений в формате pdf можно здесь.

Исходные данные для расчета ленточного фундамента

Расчет ленточного фундамента

На рисунке показана геометрия ленточного фундамента. Уровень природного рельефа взят из инженерно-геологического отчета (как и данные по всем грунтам). При строительстве дома рельеф будет понижен до уровня планировки срезкой, а пол первого этажа будет несколько выше уровня земли на улице.

Очень важным фактором является то, что подземная часть конструкции стены расположена симметрично относительно оси фундаментной ленты. А вот нагрузка от вышележащих конструкций Nc расположена с эксцентриситетом относительно этой оси. Этот эксцентриситет может быть вызван различными ситуациями (см. рисунок ниже), и важно определить не только его величину, но и в какую сторону сбита нагрузка по отношению к оси.

Сбивка нагрузки на ленточный фундамент

Исходные данные в нашем расчете описывают геометрию стены. Обратите внимание, что расчет можно построить так, чтобы вводить нужно было только значения, помеченные желтым маркером – остальные будут вычисляться автоматически.

Расчет ленточного фундамента исходные данные

Значение А3 должно быть не меньше глубины промерзания грунта в вашем районе. Пол дома нужно делать выше уровня земли.

Для упрощения расчета мы берем не всю длину ленты, какой бы она ни была, а только один ее погонный метр – так и с нагрузками проще будет оперировать, и с площадями.

Характеристики грунта в данном расчете взяты из инженерно-геологического отчета – и взяты именно расчетные значения характеристик для расчета оснований по деформациям.

Инженерно-геологический разрез

Как видно из рисунка, фундамент залегает во втором слое грунта ИГЭ-2, а в третьем присутствуют грунтовые воды.

Номер слоя грунтов

Показатели грунтов

Удельный вес, т/м3

Модуль деформации, т/м2

Сцепле- ние, т/м2

Угол внутр. трения

Коэфф. Пористо- сти

Ограничение давления, т/м2

Природное состояние

Водонасыщен- ное состояние

Природное состояние

Водонасыщен- ное состояние

ИГЭ-1

1,7

1,83

2000

1500

0,1

18

0,73


ИГЭ-2

1,75

1,89

1960

960

2,2

20

0,78

15

ИГЭ-3

1,84

1,93

1950

1950

2,8

24

0,7

 

Для данного расчета нам не понадобятся коэффициент пористости и модуль деформации, но они будут нужны при расчете осадок фундамента.

В нашем случае ИГЭ-2 – просадочный суглинок с начальным просадочным давлением 16,5 т/м2, т.е. при таком давлении под подошвой грунт резко начинает деформироваться, чего мы допустить не должны. Поэтому мы задаем начальное просадочное давление для этого слоя несколько меньшим, чем 16,5 т/м2, чтобы иметь запас. Слой ИГЭ-2 является основанием для фундамента, но если бы он был где-то глубже, то согласно п. 2.177 пособия, расчетное сопротивление следует определять по наиболее слабому грунту – об этом забывать не следует.

Итак, исходные данные по грунтам сведены ниже в расчетную таблицу. Обратите внимание, что слоев грунта уже четыре, а не три. Для удобства третий слой разделен на два – сухой и водонасыщенный.

Исходные данные по грунтам

Завершающая часть исходных данных – обратная засыпка и нагрузки.

Нагрузка на ленточный фундамент

Нагрузка на стену в нашем случае взята из примера сбора нагрузок "Собираем нагрузки на ленточный фундамент дома" для фундамента по оси «1», т.е. для фундамента под крайнюю стену, и равна она сумме постоянных и временных нагрузок из шестой таблицы примера 7391 кг/м + 724 кг/м = 8115 кг/м = 8,115 т/м (так как расчет у нас ведется на 1 погонный метр фундамента, то нагрузка Nс берется уже не в тоннах на метр, а в тоннах).

Эксцентриситет приложения нагрузки в нашем примере равен 0,1 м, сбита нагрузка в сторону дома.

Ширина подошвы ленточного фундамента

Расчет ленточного фундамента выполняется методом последовательных приближений. Чтобы от чего-то оттолкнуться, мы задаемся расчетным сопротивлением грунта (оно приближенное и выбирается из таблиц пособия для подходящего грунта). Далее мы находим предварительную ширину подошвы, по значениям которой будем уже более точно определять расчетное сопротивление грунта.

 

Определение расчетного сопротивления грунта основания и ширины подошвы фундамента (расчет основания по деформациям – по 2 предельному состоянию).

Коэффициенты для определения расчетного сопротивления грунта

Прежде всего, необходимо определить, какой слой грунта является основанием для нашего фундамента и выбрать для него угол внутреннего трения и удельное сцепление из исходных данных.

Удельный вес грунта берется в осредненном расчетном значении с учетом удельного веса всех слоев грунта и их толщин. Расчет этого осредненного удельного веса ведется по формуле Формула расчета осредненного удельного веса , где Хi – это удельное сцепление i-го слоя грунта, а hi – толщина этого слоя. Посчитав осредненное значение для четырех слоев, мы получаем значение 1,873 т/м3.

Обратите внимание, что удельный вес грунта нужно брать с учетом водонасыщенного состояния. В нашем случае водонасыщен 4 слой (т.к. он находится ниже уровня грунтовых вод).

Если в инженерно-геологическом отчете вы не найдете значения удельного веса грунта в водонасыщенном состоянии, можно воспользоваться формулой (36) пособия.

Далее приступаем к определению расчетного сопротивления грунта.

Расчетное сопротивление грунта

Значения коэффициентов выбираем из таблицы 43 пособия, при этом нужно учитывать данные пункта 2.178 о том, какие здания относятся к жесткой конструктивной схеме.

Определение расчетного сопротивления грунта

В шаге 6.2 мы определим все действующие нагрузки и приблизимся к окончательному определению ширины подошвы фундамента.

Определение нагрузок на ленточный фундамент

Сначала мы просто делим нагрузку на расчетное сопротивление и получаем ширину подошвы даже меньшую, чем ширина стены. Округляем до ширины стены 0,4 м.

Но нам также необходимо узнать нагрузку от собственного веса стены, от грунта на срезах фундамента и от временных нагрузок на грунте и на полу – все они влияют на ширину подошвы фундамента. Т.к. срезов фундамента у нас пока нет, то N1 и Nвр на данном этапе получились равны нулю, а вот собственный вес уже составил 1,5 тонны.

Уточняем ширину фундамента с новой нагрузкой и получаем уже 0,5 м. Конечно, так можно вылизывать до бесконечности, но мы пока проигнорируем N1 и Nвр и найдем среднее давление под подошвой для ширины 0,5 м.

Среднее давление для такой ширины ленты получилось больше, чем мы можем себе позволить при ограничении давления на грунт 15 т/м2. Поэтому мы пересчитываем ширину подошвы до такого размера, чтобы среднее давление было меньше 15 т/м2 – получаем ширину ленты 0,7 м.

Расчет ленточного фундамента - определение момента

Далее мы снова уточняем все нагрузки для ширины ленты 0,7 м. И в п. 6.3 снова определяем среднее давление под подошвой фундамента для уточненных значений – оно оказывается больше нашего ограничения. Тогда в п. 6.3а мы увеличиваем ширину фундамента на столько, чтобы среднее давление под подошвой стало меньше ограничения давления. Когда это произошло, мы снова находим значения всех нагрузок для ширины подошвы 0,8 м, а также уточняем значение расчетного сопротивления грунта. После этого можно определить момент, действующий относительно оси, проходящей через центр тяжести подошвы. Обратите внимание, что Nc*e при нахождении момента берется с минусом в случае, если сбивка нагрузки в сторону дома; если же в сторону улицы, то нужно в формуле ставить знак плюс.

Знак момента дает нам понять о том, с какой стороны будет максимальное давление под подошвой ленточного фундамента.

Определение эксцентриситета при расчете фундамента

Следующим шагом мы определяем эксцентриситет и проверяем несколько важных условий (смысл их описан в статье "Расчет ленточного фундамента под наружную стену в доме без подвала")

Эпюра давлений в ленточном фундаменте

Дальнейший расчет может пойти двумя путями. Если эпюра давления под подошвой фундамента имеет форму трапеции (при небольшом эксцентриситете), то считать нужно по формуле (50) пособия – у нас так и получилось, и мы будем вести дальнейший расчет по пункту 6.7. Если бы эксцентриситет оказался большим, и эпюра оказалась бы треугольной (это значит, что в фундаменте может даже получиться отрыв от подошвы), то считать нужно было бы уже по формуле (51), а в нашем расчете она прописана в п. 6.8. Я приведу оба пункта в этом примере – вдруг кому-то пригодится алгоритм. Но для этого конкретного случая п. 6.7 является завершающим для расчета.

Ширина подошвы ленточного фундамента

Сначала мы находим pmax по стандартной формуле, в которой есть только одна особенность: если сила Nc сбита в сторону дома, то в расчете принимает участие qэт (т.е. нагрузка со стороны дома), а если бы сила Nc была сбита в сторону улицы, то вместо qэт у нас бы уже была qгр (нагрузка на грунте со стороны улицы).

После определения pmax прежде всего нужно сравнить его с расчетным сопротивлением грунта. И если бы у нас не было ограничения давления на грунт, то расчет на этом можно было бы закончить. Но pmax превышает заданное ограничение, поэтому мы снова вынуждены увеличивать подошву и пересчитывать все значения (какие-то из них пригодятся нам при расчете осадок фундамента).

И как итог, у нас получается ширина подошвы фундамента 1,2 м.

И напоследок добавлю пункт 6.8, в котором показан алгоритм расчета максимального давления под подошвой в случае с треугольной эпюрой давления.

Давление под подошвой при треугольной эпюре

После того, как расчет выполнен, нужно определить осадку фундамента, но это уже тема отдельной статьи.


Добавить комментарий


Защитный код
Обновить

Поиск

Подписка на статьи

Комментарии

  • Женя 02.12.2016 14:17
    Здравствуйте!Оч ень хотелось бы статью о плоской кровле, о правильных подсчетах ...

    Подробнее...

     
  • Тамара 02.12.2016 12:18
    Добрый день!Хотела бы спросить литературу о шпонках в фундаментах, в ...

    Подробнее...

     
  • Алексей 01.12.2016 08:50
    Не проще ли сразу плиты положить как положено на фундамент. А так вам ...

    Подробнее...

     
  • Александр 30.11.2016 20:47
    Здравствуйте! У меня два вопроса к вашему рамному узлу: зачем заводить ...

    Подробнее...

     
  • Айгуль 30.11.2016 14:22
    а можно ли тогда допустим, положить плиты ПК (пустотки) на землю в ...

    Подробнее...

Яндекс.Метрика